Neural Networks for the Texture Classification of Segmented Regions of Forward Looking Infrared Images
نویسندگان
چکیده
Texture can be interpreted as a measure of the 'edginess' about a pixel and can thus be described by edge co-occurrence matrices. The matrix can be decomposed using 2-dimensional orthogonal Hermite functions, the coefficients of which provide a low order feature vector which is characteristic of the texture. The Hermite coefficients for 240 hand-segmented regions of grass, trees, sky and river from 60 forward looking infrared (FLIR) images have been used to train and validate 2 neural networks, which have subsequently been used to label FLIR images segmented using co-occurrence techniques [1].
منابع مشابه
On the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کاملAircraft Visual Identification by Neural Networks
In the present paper, an efficient method for three dimensional aircraft pattern recognition is introduced. In this method, a set of simple area based features extracted from silhouette of aerial vehicles are used to recognize an aircraft type from its optical or infrared images taken by a CCD camera or a FLIR sensor. These images can be taken from any direction and distance relative to the fly...
متن کاملIdentification of Houseplants Using Neuro-vision Based Multi-stage Classification System
In this paper, we present a machine vision system that was developed on the basis of neural networks to identify twelve houseplants. Image processing system was used to extract 41 features of color, texture and shape from the images taken from front and back of the leaves. The features were fed into the neural network system as the recognition criteria and inputs. Multilayer perceptron (MLP) ne...
متن کاملEffect of sound classification by neural networks in the recognition of human hearing
In this paper, we focus on two basic issues: (a) the classification of sound by neural networks based on frequency and sound intensity parameters (b) evaluating the health of different human ears as compared to of those a healthy person. Sound classification by a specific feed forward neural network with two inputs as frequency and sound intensity and two hidden layers is proposed. This process...
متن کاملClassification of satellite cloud imagery based on multi-feature texture analysis and neural networks
The aim of this work was to develop a system based on modular neural networks and multi-feature texture analysis that will facilitate the automated interpretation of cloud images. This will speed up the interpretation process and provide continuity in the application of satellite imagery for weather forecasting. A series of infrared satellite images from the Geostationary satellite METEOSAT7 we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1993